
On the extremality of the action integral

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 2923

(http://iopscience.iop.org/0305-4470/16/13/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 2923-2937. Printed in Great Britain 

On the extremality of the action integral 
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Departamento de Fisica Teorica, Facultad de Ciencias Fisicas, Ciudad Universitaria. 
Madrid-3. Spain 

Received 14 February 1983 

Abstract. Some necessary and sufficient conditions for a critical point of the action integral 
to be locally or globally extremal are proved. Applications to systems with finite or infinite 
number of degrees of freedom are discussed. 

1. Introduction 

The distinction between stationary and extreme is clearly stated in most of the 
mathematical literature (CarathCodory 1967, Lanczos 1970, Oden and Reddy 1976, 
Vainberg 1964). A functional is called stationary if its first-order variation around 
some given function vanishes: the function is called in this case a critical point of the 
functional, The word extremal is used to denote functions that render a functional 
extreme, i.e. either maximum or minimum. 

The situation is quite different in classical mechanics and field theory (and also in 
some mathematical books). Many authors (e.g., Arnold 1979, Barut 1964, Feynman 
and Hibbs 1965, Morse 1934, Rosen 1969, Schulman 1981) call extremal, extreme 
or extremum either the function for which a functional has vanishing first-order 
variation or the functional itself. Vice versa, the word stationary has been used 
(Lindsay and Margenau 1957) in the sense of either maximum or minimum. 

On top of that, i t  is common to speak of the least or minimum action principle. 
The name could be justified by historical reasons, but not when the principle is stated 
formally as meaning that ‘the action integral is to be minimum over the physical 
trajectories’, or at most with the warning that, actually, the action can be either 
minimum or maximum (Bradbury 1968, Goldstein 1950, Lindsay and Margenau 1957, 
Spiegel 1967, Wells 1967). As many examples in this paper show, in general the 
action integral has neither a minimum nor a maximum (even locally) over the trajec- 
tories. The source of this confusion can perhaps be traced to the philosophical 
motivations of the principle of least action of Maupertuis, as a manifestation of the 
‘economy of nature’ (Lindsay and Margenau 1957, Yourgrau and Mandelstam 1968). 
These metaphysical concomitances have been completely disallowed (Born 1969), 
but they persist at least at the terminological level. 

Actually in the derivation of the Euler-Lagrange equations through Hamilton’s 
variational principle, only the stationarity of the action integral is needed. On the 
contrary, in other problems like the search for optimal solutions in the theory of 
control and optimisation (Bellman 1967, Pontryagin et a1 1964), or the approximation 
of solutions by the Rayleigh-Ritz method (Helleman 1978), the extremality is essential, 
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Necessary and sufficient conditions for a functional to have an extremum can be 
found in the monographs on variational calculus and functional analysis (e.g. Berger 
1977, Caratheodory 1967, Funk 1962, Gelfand and Fomin 1963, Lanczos 1970, 
Lippmann 1972, Morse 1934, Oden and Reddy 1976, Pars 1962, Vainberg 1964), 
but they are either restricted to the simplest cases (finite number of degrees of freedom, 
no dependence on second- and higher-order derivatives, etc) or are quite abstract 
and do not examine explicitly the examples commonly found in field theory. In fact, 
the regularity properties of minima of multiple integrals remain only partially proven, 
as remarked by Berger (1977). An outstanding and actual example is provided by 
the classical non-abelian pure Yang-Mills theories (Eguchi et a1 1980, Actor 1979) 
in the Euclidean framework. Whereas the minimal nature of the action integral is 
simply proved for selfdual or anti-selfdual solutions (Belavin et a1 1975), to our 
knowledge the question is open in the general case, unless particular gauge groups 
(such as SU(2) or SU(3)) are assumed and solutions extensible to the one-point 
compactification of R4 are considered (Bourguignon er a1 1979, Bourguignon and 
Lawson 1981). Ellipticity of the associated complex bundle is essential for the proof 
of these results. (See also Jaffe (1982) for a recent discussion, and Taubes (1982) for 
the non-minimality of some Yang-Mills-Higgs solutions.) 

For these reasons we think that a discussion of some necessary and sufficient 
conditions for the existence of extrema of a functional, valid for systems with finite 
or infinite number of degrees of freedom and with dependence on arbitrarily high 
derivatives, will be useful. We have applied these criteria to some of the problems 
frequently found in mechanics andlield theory, in order to show their power and ease 
of application and at the same time to dispel possible misconceptions (such as a belief 
in the minimal character of the solutions in field theory if the interval in the independent 
variables is small enough). Of course, the applications can be extended to any extrema1 
problems, like the ones of control and optimisation. To keep the work within 
reasonable bounds we do not consider the inclusion of constraints. 

The plan of this paper is as follows. 
In 9: 2 we define the notation and summarise the concepts that will be used through 

the rest of the paper. 
In 9: 3 we prove three criteria for minimality. The first one is a set of algebraic 

necessary conditions. The second one shows how the concept of strong ellipticity (also 
an algebraic condition) is sufficient to ensure that the action integral is locally strictly 
minimum. Finally, the third criterion, based on the positivity of the spectrum of 
strongly elliptic differential operators, gives necessary and sufficient conditions for 
extremality. 

In 9 4 we show some applications of the criteria of 9 3.  First we display examples 
in classical mechanics (relativistic particle in a given electromagnetic field) and field 
theory (interacting scalar and electromagnetic field, classical electrodynamics, Dirac 
equation, time-dependent Schrodinger equation) in which the action integral is never 
extreme, even locally. Then we consider some discrete and continuous systems where 
the action is strictly minimum, at least locally. The extremum character of the action 
in the large is considered in the next group of examples: in some cases (harmonic and 
anharmonic oscillators, particle in a constant magnetic field or in a Coulomb potential) 
the action is never globally extreme; in others (a double well potential) some trajec- 
tories are globally minimal, while others are not. 

Finally, in 9: 5 we show how, given any equation (or systems of equations), it is 
always possible to find a generalised Lagrangian such that any solution of the equation 
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is a globally minimal point of the corresponding action integral (in fact the action 
reaches its absolute minimum at these solutions). From the numerical point of view 
the associated variational search for solutions may however face serious difficulties, 
some of which are briefly suggested therein. 

2. Notation and definition 

Independent variables (such as the time t in ordinary non-relativistic mechanics, the 
invariant interval s in relativistic mechanics, the coordinates x o ,  x l ,  x 2 ,  x 3  of an event 
in Minkowskian field theory, etc) will be denoted by x = ( x  ', . . . , x N ) .  The symbol 
U = ( U  , . . . , u R )  will stand for real dependent variables (the generalised coordinates 
q, of a discrete mechanical system, the fields in continuous systems, etc). 

A set of non-negative integers ( U , ,  . . . , u N )  constitutes a multi-index a = 
( ~ 1 , .  . . , U N ) ,  of order l a l=a l+ .  . . + U N .  

The symbol U ( x )  will represent as usual the partial derivative 

1 

u : , ( x )  = a ' " ' U ' ( X ) / ( a x  . . . ( a x N l a N .  ( 2 . 1 )  
By 3 [ x ,  U ]  we shall denote a sufficiently smooth (say C") function of x ,  U and the 

derivatives u , ~  up to some finite order la 1 s I ,  I > 0. In our applications, T[x, U ]  will 
be the Lagrangian density. 

Given a domain (bounded open set) R c R N ,  we shall define a functional A n [ u ]  
(the action integral) as 

Such a functional exists and is C" if U E C'(n), the Banach space of the vector-valued 
real functions u ( x )  such that u f a  is continuous on the closure for la1 sl, with norm 
IIu/Iclcn,= I;lalrlsupi,n lula(x)I (Berger 1977).  In  fact, A n [ u ]  has the Taylor expansion 

J 1  
A ~ [ u  + U ] =  1 ,A; ' [u] (u , .  . . , V ) + R X * ' ) [ U ,  U ]  

j = o ] .  - 
i 

(2 .3 )  

where A;'[u]  is the functional (Frtchet) j th  derivative of An at U ,  and the remainder 
RX'" satisfies l ~ X + l ) [ u ,  U ] /  = o(lluIlcl,n,). J 

In particular the first terms in (2 .3 )  are 

A;' [u]  = A R [ u ] ,  ( 2 . 4 ~ )  

(2 .4b )  

We are now in a position to define precisely what we shall understand by the terms 
stationary, extreme and minimum applied to the integral action. 

Definition 1. A n  is stationary at uo  if 
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(where Cb(sZ) is the subspace of those functions in C'(n) with compact support in 
the open set n; such functions and their derivatives up to order 1 vanish on the 
boundary an of 0). 

In the sequel we shall write uc to denote an arbitrary critical point of A n  (i.e. A n  

When U E C2'(n), a simple integration by parts yields 
stationary at uc) .  

where the variational derivative is 

(2.6) 

with Da = (Dl)"l . . , (DN)aw,  The symbol D, denotes the total derivative with respect 
to x i :  

where a + e ,  is the multi-index ( a l , .  . . , ai + 1, . . . , a N ) .  Therefore, we have the well 
known result: 

Proposition I .  A~ is stationary at U,E ~ " ( i i )  iff 

(sz /Su 'XX, u,(x ) I  = 0, r = 1,.  . . , R, (2.9) 

i.e. iff u, (x)  satisfies the Euler-Lagrange equations 

Definition 2. An  has a minimum at uo if 3 a ball B,(n)  ={U E Ch (a): l/ulIcicn, 5 E ) ,  

E > 0, such that 

A n[uo + I 2 A n[uol vu E B, (0). (2.10) 

Proposition 2. The action integral An has a minimum at uo  only if A is stationary at 
uo and 

A$' [uo] (u ,  U )  2 0 v u  E ct, (0). (2.11) 

(The proof follows immediately from (2.3).) 

Definition 3. A has a strict minimum at U, if 3B,( f l ) :  

Proposition 3. A sufficient condition for A n  to have a strict minimum at U, is 

vo f u E c:, (0). A'n2'[uC](v, U )  > 0 (2.13) 

(The proof is again straightforward.) 

Remark 1. The dual notions of maximum and strict maximum are defined mutatis 
mutandis, and the previous propositions carry over to this case with the pertinent 



Extremality of the action integral 2927 

trivial modifications. When An has either a minimum or a maximum at U, we shall 
say that An has an extremum at U,. 

Definition 4. A critical point U, will be called locally minimal at xo if 3 a domain 
R03 xc such that An, has a minimum at U,. When U, is locally minimal at each x E R, 
we shall say that An is locally minimum at U,. 

Note that this requirement is weaker than the condition (2.10) in definition 2, 
since now the inequality (2.10) is only supposed to hold for U in suitable x-dependent 
balls. Actually, An minimum at u,+An locally minimum at U,. In 84.3 several 
examples will illustrate how the action integral An can be locally minimum at any U, 
and every R whilst An will not in general be minimum if R is large enough. 

Definition 5. A critical point U, will be called globally minimal if An has a minimum 
at U, for all domains R. The action will accordingly be said to be,  globally 
minimum at U,. 

Remark 2. Note that 'local' and 'global' refer to the independent variables and not 
to the functional space; we are not comparing the values of An for different ut's. 

Remark 3.' It should be noted that An minimum at u,eAnt  minimum at U, for every 
R' E R. 

Remark 4. The addition of a divergence Dif'[x, U ]  (with possible dependence on U 
and its derivatives up to order I )  to the Lagrangian density does not change the 
difference A[u + U ] - A [ u ]  for any v E Cb(fl). In fact, the new action integral is 

A ~ [ u ]  dx {3[x, U (X )] +Dif'[x, U (x)]} = A n [ u ]  + uan[u]  (2.14) 

where the functional w d n [ u ]  depends only on the values of U and its derivatives on 
the frontier an. 

Then, wan[u + u ] = o a n [ u ] ,  Vu ~ c b ( R ) J A n [ u  +ul=An[u + u l + w a n [ u ] ,  and 
therefore 

A,[u + u ] - A ~ [ u ] = A , [ u  +v]-An[u]. (2.15) 

In particular, Az) = Ag', V i  3 1, and the critical, minimal, strictly minimal, etc 
character of a function u(x)  is unaffected by adding a divergence to the Lagrangian 
density. 

3. Criteria for minima 

Given a critical point U , E  Cm(fi) of An, let us write 

A : ; ( x ) = ( d 2 2 / a u l a  aufb)[x, u , ( x ) ]  

and consider the differential operator matrix ~ ( x ,  D )  with entries 
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and a weighted principal symbol .in ( x ,  D )  defined, for a multi-index n,  by 

7:s(~, D) 3 (-I)'"'DaA;:(X)Db 
n . la + b ) = M .  

where Mn = max n (a  + 6 )  over those multi-indices a,  6 for which Aa6bp 0. 
With the standard notation 6 ' x  = Z Y t i x i ,  (A,  @ ) = Z f A r * p r  we claim: 

(3.3) 

Theorem 1. A necessary condition for minimum. A n  minimum at ucc C"( i i ) j  

(A,  ?(x, i6)h)Z-O V ~ E  RN, A E C R ,  x E 0, n E Zy. (3.4) 

Proof. After complexification of the symmetric bilinear functional AX'[uc](u, w ) :  

Ai2'[uC](ul +iu2, w 1  +iwz) 

= A ")[U~] (U 1, w 1) + A ( 2 ) [ ~ c ] ( ~ 2 ,  ~ 2 )  

+i{A'2'[Ucl(vl, w2) --A(2)[UcI(U2, w1)) (3.5) 

it is plain from proposition 2 that A n  minimum at uc implies 

A(2'[~c](ei*'xq, e'*'"q) 3 0 (3.6) 

The asymptotic behaviour of (3.6) when 6 increases to infinity as ( p n $ ' ,  . . . , p n N I N )  
forces the dominant part of (3.6) to be non-negative: 

~q = q 1  + iq2, qi E C: (01, 6 E R ~ .  

dx 1 qr* (x )? : , (x ,  i[)qs(x) 3 0. h r.s 
(3.7) 

The arbitrariness of q thus ensures (3.4), by a suitable sequential approach to limiting 
delta-functions. 

Definition 6. T(X, D )  is called strongly elliptic in 0 if 3k > 0 such that 

(A,  ?(x, i6)A) Z k IA /*1612' V X E ~ , A E C ~ , [ E R ~ ,  (3.8) 

where ? ( x ,  D )  stands for the principal symbol (3.3) with n = ( 1 , .  . . , 1). 

The following important theorem is adapted from well known results in the 
minimisation theory of critical points (Berger 1977). 

Theorem 2. A sufficient condition for locally minimum. T(X, D )  strongly elliptic in 
O+An is locally strictly minimum at uc. 

Proof. We shall follow closely the arguments in Berger (1977). The strong ellipticity 
ensures the important GArding inequality: 3 k l  E R, K > 0 such that 

(U, (7 +~l)u)t~cn,~Kllul lZH'in, v u  E cf, (0) (3.9) 

where ( a ,  - It2 stands for the usual scalar product in the Hilbert space @f L2(R, dx), 
and I ( . l I H 1  is the Sobolev norm defined by 

(3.10) 
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For a given x ~ E R ,  we can always find a sufficiently small domain no3x0  with the 
property 

llUllt2(nd (K/21kl l)llU llkf(lluJ V U  E c; (RI)). (3.11) 

It suffices to use PoincarC's inequality 

IIuIIL2(f2) k(fl)llvUllL2(RJ (3.12) 

(valid for any domain R and U E C? (R)) and a simple dilation argument. 
From (3.9) and (3.11) we get 

AE;[u, l (v ,  v )  2 %IIuIILl(no, (3.13) 

for every U E C? (ao) and thus on HI, (no) by completion of C; (0,) in the H' norm. 
Proposition 3 shows now that An, has a strict minimum at U,, and the possible 

xo-dependence of the domain R, renders it local. 

Our next aim will be to provide a powerful operator-theoretic criterion for the 
existence of a strict minimum in a given domain R. To this end we need to recall 
(without proof) some mathematical results of spectral analysis. Suppose that T ( X ,  D )  
is strongly elliptic in the bounded open set R with smooth boundary an. GArding's 
inequality (3.9) and the Lax-Milgram theorem (Berger 1977) ensure the existence of 
a self-adjoint operator T ~ ( T )  (the Friedrichs extension of the restriction T 1 C? (R) of 
T to C? (a)) with domain 

(3.14) D ( T ~ ( T ) )  = HI, (0) n {U E ~ ~ ( n ) :  TU E L ~ ( s z ) )  

and such that 

Tn(7)u = 7 U  (in distribution sense). (3.15) 

This operator T ~ T )  enjoys the following properties (Dunford and Schwartz 1963): 

(i) D ( T ~ ( T ) )  = H L  (0) n H"(R); 

(ii) it is semibounded, with discrete spectrum 

fl(Tn(T))={I*.i(n, T ) ~ C L Z ( ~ ,  7 ) s . .  .); 

(iii) it is the closure of the operator 

T 1 {U E C"(fi): the normal derivatives 8kormal U = 0, j = 0, . . . , I - 1 on an); 
(iv) its eigenfunctions lie in ~"( i i ) .  

Armed with these results, we claim: 

Theorem 3. A sufficient condition for strict minimum. Let T ( X ,  D )  be strongly elliptic, 
with 8 0  smooth. Then 

(a) pl(n, 7 ) > 0 j A n  has a strict minimum at U,; 
(b) kL,(n, T)<O$A, has not an extremum at U,. 

Proof. Since by hypothesis 9 [ x ,  U ]  is smooth and U,E Cm(fi), the coefficients A,"P(x) 
given by (3.1) will be bounded on R and thus 

lA:'[ucl(T, XI1 constant llT Ilff~~nJllXIlHJ~n~ (3.16) 
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for VTJ, ,y E H 1 ( R ) .  We can thus evaluate A:’[u , ]  (U, U )  for any U E C:) (a) as the limit 
of A:’[uc] (v , ,  U,), j --* CO, over a sequence C? (a) 3 v, + U in the H ‘ ( n )  norm. 

AX’[U,](U,, U , )  = ( U ) ,  T ~ ( T ) u , )  ~ ’ c L I ( R ,  T)IIU~II:~UII 
(a) As 

(3.17) 

in the limit j + 47 we get 

A:’Iuc1(u, U ) ~ ’ C L I ( ~ ,  T ) ~ \ u ~ ~ ? v I , > O  if o z  U E cl, (0). (3.18) 

(b) Should A n  have an extremum at uc then forcefully it  should be a minimum 
because of (ii). But then proposition 2 would imply the positivity of the quadratic 
form AX’ on C,“(n)xC,“(n), and therefore the positivity of the operator T ~ ( T )  
associated with its Friedrichs extension (Reed and Simon 1975), i n  contradiction with 
hypothesis (b). 

In view of the preceding results, the systematic analysis of the minimality of the 
action integral might roughly proceed along the following steps. 

First, try to see whether some of the necessary conditions established in theorem 
1 are violated, so precluding the minimum character. Otherwise, it may likely turn out 
that T ( X ,  D )  is strongly elliptic, thus warranting locally a strict minimum through 
theorem 2. For small enough, A n  will actually be a strict minimum (not only locally), 
because of Girding’s and PoincarC’s inequalities. However, when n is enlarged, it 
might happen that the minimum character disappears even though A n  still has locally 
a minimum at u C .  The onset of this situation is marked by the lowest eigenvalue 
p1(a, T )  becoming negative, according to theorem 3 .  

4. Applications 

This section will be devoted to illustrating how the previous criteria can be put to 
good use for the analysis of minimality of the action integral in several cases of physical 
interest. Among these there will appear some examples with complex-valued field 
functions in real-valued Lagrangians. The canonical way of dealing with them would 
be to decompose such variables into their real and imaginary parts. Such a procedure 
may be cumbersome, and thus it seems desirable to work directly with the fields 
themselves and their complex conjugates as if they were independent, but with 
complex-conjugate infinitesimal variations. This formal handling may be justified in 
most applications, provided that the expressions involving the fields are analytic (as 
we shall tacitly assume when the Lagrangian density is not given explicitly). 

4.1. Applications of theorem 1: non-existence of minima 

4.1.1. Charged relativistic particle in an external electromagnetic field 

9 [ ~ ,  ~ ( ~ ) ] = - i g ~ ~ i ~ i ”  -A, , ( , z )~”  (4.1) 
where s is the invariant interval in Minkowski space and i 

In this example there is only one independent variable, the interval s, and four 
dependent variables, the coordinates z W  of the particle ( N  = 1, R = 4).  

The principal symbol 7(s, D )  is the 4 x 4 matrix with components Dg,Q. The 
matrix - g , y f z  is not definite (either positive or negative) and therefore according to 

dz ”Ids = Dz *. 
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theorem 1 (and its trivial counterpart for the case of maximum), the action is never 
minimum nor maximum: even for As arbitrarily short there are small variations around 
any given trajectory z c  for which the action integral decreases, and other variations 
for which it increases. 

4.1.2.  Charged scalar and electromagnetic fields in interaction 
S 

Z= Z * ” ’ + Z E M f Z i n t  
1 = 1  

with 

Z*~I, ={DFq5i‘)}*D”q5i‘)- m :  14i‘)12, ( 4 . 3 a )  

ZEM“-a{DfiAv - D , , A , } { D ” A ” - D ” A ” }  (4 .3b )  

and Z,nt(4‘1), , , . , des), A )  with at most linear dependence on first-order derivatives 
and no dependence on second- or higher-order derivatives. 

In this example x = { x ” ; p = O , l , 2 , 3 } ,  u = { c $ ( ~ ) , ~ ‘ ~ ) * , A ” ;  i = l ,  . . . ,  S,  p =  
0 , .  . . ,3} ,  N = 4 , R  = 2 S + 4 .  

If we denote by A I i ’  the first S components of A ‘ and by A 2 the last four components, 
we have 

where (a ,  p )  = (Y :p ” is the Lorentz scalar product. 
Again, the expectation value ( 4 . 4 )  has no definite sign and therefore the action 

integral is neither maximum nor minimum. This result applies in particular to the 
free electromagnetic field. 

A similar argument proves that the action integral is never extreme in the 
case of the electromagnetic field interacting with an external current, 2 = 2 E M  -Ad” 
(the interaction term gives no contribution to the principal symbol 7) .  

The inclusion in (4 .2 )  of Dirac fields with non-derivative couplings would not 
change the principal symbol ? ( x ,  D ) ,  and the previous result still holds. In particular, 
for the usual classical electrodynamics (Dirac and Maxwell fields interacting through 
the minimal coupling), the action integral is never extreme. 

4 .1 .3 .  Dirac field with non-derivative self-coupling 

Z E ii{&ywD”4 - (O,~)Y wG} + y i n t ( G ,  &) (4.5) 

In this example 

(A,  ?(x, i [ )A) = -2h3,ywA (4.6) 
which once more is indefinite, and thus the action integral is neither minimum nor 
maximum. 
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and therefore if we denote by t(o) the component of ti corresponding to the time 
variable and we choose a multi-index n = (1 ,0 ,0 ,0 )  (with the time written in the first 
place), the corresponding weighted principal symbol gives 

(4.9) 
which has no definite sign. Therefore the Schrodinger action is neither minimum nor 
maximum. 

(A,  ?“ (x, %)A ) = -21A I25(o) 

4.2. Applications of theorem 2: actions which have locally a strict minimum 

4.2.1. Non-relativistic mechanical system 

9 = $4 ‘mrs(iS + gint (4.10) 

where q‘ =dq‘/dt, the ‘mass matrix’ m = (mrs) is symmetrical and strictly positive 
definite, and Yint depends smoothly on t ,  q, and at most linearly on q. 

In this example, the independent variable x is just the time variable t, and the 
dependent variables are U ={qr, r = 1, . . . , R}. The components of the principal sym- 
bol .? are 

(4.11) 

Then T(X, D )  is strongly elliptic over the whole time interval U3 and according to 
theorem 2, the action integral A n  will be locally strictly minimum at any qc smooth 
on i?. 

T,, ( t ,  it) = mrd2. 

4.2.2. Euclidean scalar field 

9 = ;(Dlq5)s”Dlq5 + 9 1 ” t  (4.12) 

where q5 is real valued (the generalisation to more than one field or/and to the complex 
case is trivial), and 9,nt depends smoothly on x ={X I ,  i = 1 , .  . . , N } ,  q5 and at most 
linearly on old. 

Now 
(4.13) 

Therefore 7(x, D )  strongly elliptic over RN .$the action A n  is locally strictly minimum 
at any c j C  smooth on i?. 

2 ?(x, it) = (lsik& . 

4.3. Applications of theorem 3 

4.3.1. Harmonic oscillator in R dimensions 
R 

r = l  
9 4  c {(qr)2-w:(qr)2}, wr  3 0 ,  r = 1 , .  . . , R .  (4.14) 

This is a particular case of 8 4.2.1 and therefore the action integral An will be locally 
strictly minimum at any qc and every domain a. To elucidate the size of fl for which 
A is strictly minimum at qc, it will suffice to compute the lowest eigenvalue of Tn(r) .  
This operator is given by 

T n ( T ) = s r , { - D 2 - w ? }  (4.15) 

with Dirichlet boundary conditions on 130. Therefore T~(T) is just a direct sum of 
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one-dimensional free Schrodinger operators in an infinite square well potential of 
width In1 = t2- t l ,  if n = ] t l ,  t2[.  Consequently 

pi(% 7 ) = ( T / 1 f i l ) 2 - U 2 1  w = SUPr w r .  (4.16) 

If T denotes the span, 27r/w, then theorem 3 leads immediately to the following 

(i) Jill < T / 2 = S A n  has a strict minimum at any qc;  
(ii) ]RI > T / 2 j A n  has not an extremum at any qc. 

conclusions: 

The border case Inl= T / 2  is not covered by this theorem. To ascertain what happens 
in this situation, we must resort to higher-order variations. However, 2 being 
quadratic, Ag’[qc] = 0, V i  3 3 and therefore An has a (non-strict) minimum at every qc. 

It should be noted finally that, due to the vanishing of the higher variations A:’, 
j s 3 ,  the action integral has a strict minimum at qc not only under infinitesimal 
variations but also for arbitrary large variations vanishing at the end points of qc, so 
that given ( t l ,  q l ) ,  ( t2 ,  q2)  there is only one physical trajectory qc joining them whenever 
lt2-tll < T / 2 .  If It2-tll = T / 2 ,  the action integral An is still minimum at qc, but there 
is now a continuum of physical trajectories, with the same value of the action, 
connecting the end points. These are conjugate in Jacobi’s sense (Lippmann 1972, 
Schulman 1981). 

4.3.2. Non-relativistic charged particle in an external electromagnetic field 

2= i m q 2  + ( e / c ) q  A(q, t )  - e 4  (q, t ) .  (4.17) 

This is again a particular instance of § 4.2.1 and therefore the result obtained there 
applies: the action An has locally a strict minimum at any qc smooth on a. 

To strengthen this conclusion we need the explicit form of the operator T(t, D ) :  

(4.18) 

where we have used the relations between the fields E, B and the potentials q!~ and 
A in order to write down T(t, D )  in a gauge-independent way. 

According to the values of E and B several behaviours may arise. We shall 
consider some examples. 

4.3.2. (a) Static and uniform electromagnetic fields 

E(q,  t )  =Eo, B (4, t )  = Bo, Eo, Bo constant. (4.19) 

Now 

Tii(t, D )  = m{-ai,D2 + ~ ~ ~ k w b )  (4.20) 

where u o = e B o / m c ;  the modulus of this vector, o ~ = ( o ~ ~ ,  is called the cyclotron 
frequency. Note that the constant electric field does not play any role in T.  
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If w o  = 0, T ~ ( T )  is strictly positive for any domain R and the action A n  has a strict 
minimum at any qc, i.e. any trajectory in a constant electric field is globally strictly 
minimal. 

If w o #  0, let e l ,  e2, e3 be an orthonormal triad of real vectors such that e 3 5 d 0 .  
If we denote e*= 2-”’(el f ie2) ,  the operator ~ ( t ,  D )  can be rewritten as 

T i k ( f ,  D )  = m{-SjkD2+iwo(e7e;* -eTe;*)D}. (4.21) 

Therefore T ~ ( T )  is the direct sum of three uncoupled operators, associated to the 

(4.22) 

with Dirichlet boundary conditions at the end points of R = I t l ,  t 2 [ .  Hence the lowest 
eigenvalue of T ( t ,  D )  is 

C L ~ ( R ,  T )  =m{(r/IR1)2-iwi}. (4.23) 

directions e+,  e-, e3,  namely 

~ * ( t ,  D )  = -m ( -D2 i i w a ) ,  ~ ~ ( t ,  D )  = -mD2, 

Then, if we denote To=2r/w0,  we have 
(i) 
(ii) 
(iii) In/ = T o J A ,  is minimum at qc (again the Lagrangian in this particular case 

< To+An has a strict minimum at q,; 
> T o 3 A n  is neither minimum nor maximum at qc; 

of constant and uniform E, B fields is quadratic). 

4.3.2 (b) Circular motion in an attractive Coulomb potential 

A = O ,  4(q) = Q/lql, eQ < 0. (4.24) 

Tij(t, D )  = -mSiP2 +eQlql-3(Sij -3qiqj/Iq/2)/q=qc. 

Now 
(4.25) 

For a circular orbit qc of radius R,, the eigenvalues of the matrix eQlql-3(Sii- 
3qiqi//q 1’) evaluated at qc are eQRF3, double, and -2eQRi3, simple. Consequently 

(4.26) 

and therefore, remembering that the period of the circular orbit is Tc= 
2v(mR:/)eQl)”’, we have 

C L ~ ( R ,  T )  = mr2/lR/’+ leQIRi3 

(i) /RI < i T , 3 A n  has a strict minimum at q,; 
(ii) IRI >iTc+An is neither minimum nor maximum at qc. 
Note that in both examples 4.3.2(a) and 4.3.2(b) the action An loses its character 

is large enough that there is more than one possible of minimum just when 
trajectory connecting the end points. 

4.3.3. Non-relativistic point particle in a one-dimensional potential 

Y=$q2- V(q). (4.27) 

Again, the action integral An is locally strictly minimum at any qc smooth on h, as 
discussed in S: 4.2.1. 

To determine whether A n  has a minimum (not only locally) at a given qc, we must 
analyse the sign of the lowest eigenvalue of the operator T*(T) defined in (3.15), 
which in this example is 

(4.28) T ~ ( T )  = -D2 + W ( t )  
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with Dirichlet boundary condition on 8 0 ,  D = -d/dt and 

W ( t )  = - V"(q,(t)). (4.29) 

Fortunately, as we shall see in the following, some general conclusions can be 
reached without the precise knowledge of the trajectory qc ( t ) ,  that in general is a 
non-trivial problem by itself. 

4.3.3 (a) A n  anharmonic oscillator 

k > O ,  p L 0. (4.30) 1 V ( q )  = 7 k q 2  + ips4, 

In this case W ( t )  = -k  - 3 p q 2 s  -k. Therefore 

Tn(7)  -Dz - k .  (4.31) 

The lowest eigenvalue of the operator on the right-hand side of (4.31), with Dirichlet 
boundary conditions, is v l ( n )  = .rr2//0l2 - k .  Therefore, a sufficient condition for T ~ ( T )  
to have at least one negative eigenvalue is v1 < 0, i.e. 

101 > v k - 1 ' 2 .  (4.32) 

In consequence An has not an extremum at qc if the interval 101 is large enough 
(a sufficient condition being (4.32)). Actually, a similar result holds for all potentials 
such that V"(q) L 0, V"(q) F 0 (for instance, V ( q )  = pq2", p > 0); we omit the general 
proof for brevity. 

4.3.3 (b) Some potentials with globally minimal trajectories. For all closed trajectories 
previously considered in 8 4.3, the action integral loses its minimum character when 
the interval /RI is large enough. Nevertheless, this is not a general result, as we shall 
see in what follows. 

Let us consider the double well potential 

V ( q ) = - $ a q 2 + i p q 4 ,  a>o,p>o.  (4.33) 

In this example W ( t )  = a -3pqc(t) > O  whenever lqcl <a/3p. Therefore it is to be 
expected that those trajectories that spend most of their time near the origin q = 0 
will be globally minimal (for instance, in the limit E = 0 the particle takes an infinite 
time to reach the point 4 = 0, whereas the time spent in the /q  I > a/3p region remains 
bounded, and so the behaviour approaches that for W(t)>O for all t ) .  To confirm 
this hint in a rigorous way we shall prove the following theorem. 

Theorem 4. Let W ( t )  be the function defined in (4.29) and 

Sn' dt W(t ) .  h 
Then Sn > 0 + A n  has a strict minimum at qc. 

(4.34) 

Proof. For any y €10, 1[ we can write down 

T ~ ( T ) =  - y ~ 2 + ( i - y ) { - ~ 2 + ( i  - y ) - l ~ ( t ) } ,  (4.35) 

With the Dirichlet conditions, the first term on the RHS is strictly positive ( - y o 2  2 
- , J x * / ~ ~ / ~ ) .  On the other hand, a beautiful theorem by Simon (1976) asserts that 
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-d2/d t2+ V ( 6 ) s O  whenever V ( t )  encloses a positive area with the real axis and 
tends to zero sufficiently fast when I,$l+co (in our case, the variations vanish at the 
boundary 8 0  and we extend W ( t )  = 0, V t  E 0). Therefore, Sn > 0 3  T d r )  > O j  A n  
strict minimum at qc. 

Furthermore: if the trajectory qc is periodic with period T,, then Sn > 0 for some 
Cl = ( t l ,  t l  + T,)Jq, globally strictly minimal. The proof is straightforward: S(,l,rl+Tc, > 
03S(r l . t l+nTc)  - n S ~ t l , r l + ~ c )  > O ,  V n  JA(t,,r,+nTc) strict minimum at qc+An strict 
minimum at q,, Vn, according to remark 3. 

To apply this result to the case (4.33), we need only show the existence of 
trajectories for which S(,l,,l+ Jc, > 0. It is easy to prove that there is a region of energies 
around E = 0 for which this condition is verified (the boundaries of this region can 
be determined by solving a couple of transcendental algebraic equations involving 
elliptic functions, that we omit for brevity). For energies outside this region the action 
integral A n  is not minimum if the time interval 101 is large enough (this result was 
also to be expected: the potential (4.33) is approximately harmonic for energies near 
the minimum, E ,  = -a 2/4p, and it is approximately quartic for large energies, and 
as remarked in 3: 4.3.3(a), for potentials pq2" the trajectories are not minimal if 101 
is large enough). 

- 

5. Generalised Lagrangians 

For those problems in which stationarity is not enough and minimality is needed, for 
instance in the search for solutions by variational methods, one might try to use a 
generalised (or weak) Lagrangian in the Ibragimov sense, such that any solution of a 
given equation (or system of equations) will be minimal with respect to the new action 
integral. 

If w[x, U (x)] = 0 is the equation, the simplest choice is 

Y [ X ,  u(x)]=$w'[x, u(x)]. (5.1) 

Clearly An[u ,+v]aO =An[u,], and hence A n  has a minimum at any U, solution of 
w[x, u(x)] = 0, Vn. Obviously the action corresponding to (5.1) may have other critical 
points, namely the solutions of the associated Euler-Lagrange equation 

which do not satisfy w = 0. 
However, with boundary conditions suitable for the original equation w = 0, (5.2) 

may have in general infinitely many solutions close to U,, i.e. with vanishingly small 
stationary action. Thus from a practical viewpoint it may prove difficult to single out 
U,, even in the case where uc is strictly minimal for the new action. 
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